This week’s lab will introduce you to how we can use randomized simulations to test the validity of a hypothesis. We focus in on an example from basketball to show how R can offer insight into the question of whether or not players have a “hot hand”. This lab demonstrates how computational models and simulations play an important role when analyzing and interpreting experimental data.
The Hot Hand
Basketball players who make several baskets in succession are described as having a hot hand. Fans and players have long believed in the hot hand phenomenon, which refutes the assumption that each shot is independent of the next. However, a 1985 paper by Gilovich, Vallone, and Tversky collected evidence that contradicted this belief and showed that successive shots are independent events. This paper started a great controversy that continues to this day, as you can see by Googling hot hand basketball.
We do not expect to resolve this controversy today. However, in this lab we’ll apply one approach to answering questions like this. The goals for this lab are to
- Think about the effects of independent and dependent events.
- Learn how to simulate shooting streaks in R.
- To compare a simulation to actual data in order to determine if the hot hand phenomenon appears to be real.
About the dataset
Our investigation will focus on the performance of one player: Kobe Bryant of the Los Angeles Lakers. His performance against the Orlando Magic in the 2009 NBA Finals earned him the title Most Valuable Player and many spectators commented on how he appeared to show a hot hand.
Data contents
Data from the five games the Los Angeles Lakers played against the Orlando Magic in the 2009 NBA finals. This dataset contains 133 observations and 6 variables, where every row records a shot taken by Kobe Bryant. The shot variable in this dataset indicates whether the shot was a hit (H) or a miss (M).
Variable | Description |
---|---|
vs | ORL if the Los Angeles Lakers played against Orland |
game | game in the 2009 NBA finals |
quarter | quarter in the game, OT stands for overtime |
time | time of game in seconds at which Kobe took a shot |
description | description of the shot |
shot | H if the shot was a hit, M if the shot was a miss |
Defining a shooting streak
Just looking at the string of hits and misses, it can be difficult to gauge whether or not it seems like Kobe was shooting with a hot hand. One way we can approach this is by considering the belief that hot hand shooters tend to go on shooting streaks. For this lab, we define the length of a shooting streak to be the number of consecutive baskets made until a miss occurs.
For example, in Game 1 Kobe had the following sequence of hits and misses from his nine shot attempts in the first quarter:
H M | M | H H M | M | M | M
You can verify this by viewing the first 8 rows of the data in the data viewer.
Within the nine shot attempts, there are six streaks, which are separated by a “|” above. Their lengths are one, zero, two, zero, zero, zero (in order of occurrence).
- What does a streak length of 1 mean, i.e. how many hits and misses are in a streak of 1? What about a streak length of 0?
Counting streak lengths manually for all 133 shots would get tedious,
so we’ll use the custom function calc_streak
to calculate
them, and store the results in a tibble called kobe_streak
as the length
variable.
We can then take a look at the distribution of these streak lengths.
- Describe the distribution of Kobe’s streak lengths from the 2009 NBA finals. What was his typical streak length? How long was his longest streak of baskets? Make sure to include the accompanying plot in your answer.
Compared to What?
We’ve shown that Kobe had some long shooting streaks, but are they long enough to support the belief that he had a hot hand? What can we compare them to?
To answer these questions, let’s return to the idea of independence. Two processes are independent if the outcome of one process doesn’t affect the outcome of the second. If each shot that a player takes is an independent process, having made or missed your first shot will not affect the probability that you will make or miss your second shot.
A shooter with a hot hand will have shots that are not independent of one another. Specifically, if the shooter makes his first shot, the hot hand model says he will have a higher probability of making his second shot.
Let’s suppose for a moment that the hot hand model is valid for Kobe. During his career, the percentage of time Kobe makes a basket (i.e. his shooting percentage) is about 45%, or in probability notation,
P(shot 1 = H) = 0.45
If he makes the first shot and has a hot hand (not independent shots), then the probability that he makes his second shot would go up to, let’s say, 60%,
P(shot 2 = H|shot 1 = H) = 0.60
As a result of these increased probabilites, you’d expect Kobe to have longer streaks. Compare this to the skeptical perspective where Kobe does not have a hot hand, where each shot is independent of the next. If he hit his first shot, the probability that he makes the second is still 0.45.
P(shot 2 = H|shot 1 = H) = 0.45
In other words, making the first shot did nothing to affect the probability that he’d make his second shot. If Kobe’s shots are independent, then he’d have the same probability of hitting every shot regardless of his past shots: 45%.
Now that we’ve phrased the situation in terms of independent shots, let’s return to the question: how do we tell if Kobe’s shooting streaks are long enough to indicate that he has a hot hand? We can compare his streak lengths to someone without a hot hand: an independent shooter.
Simulations in R
While we don’t have any data from a shooter we know to have independent shots, that sort of data is very easy to simulate in R. In a simulation, you set the ground rules of a random process and then the computer uses random numbers to generate an outcome that adheres to those rules. As a simple example, you can simulate flipping a fair coin with the following.
The vector coin_outcomes
can be thought of as a hat with
two slips of paper in it: one slip says heads
and the other
says tails
. The function sample
draws one slip
from the hat and tells us if it was a head or a tail.
Run the second command listed above several times in the Console window. Just like when flipping a coin, sometimes you’ll get a heads, sometimes you’ll get a tails, but in the long run, you’d expect to get roughly equal numbers of each.
If you wanted to simulate flipping a fair coin 100 times, you could
either run the function 100 times or, more simply, adjust the
size
argument, which governs how many samples to draw (the
replace = TRUE
argument indicates we put the slip of paper
back in the hat before drawing again). Assign the resulting vector of
heads and tails to a new variable called sim_fair_coin
.
To view the results of this simulation, type the name of the object
and then use table
to count up the number of heads and
tails.
Since there are only two elements in coin_outcomes
, the
probability that we “flip” a coin and it lands heads is 0.5. Say we’re
trying to simulate an unfair coin that we know only lands heads 20% of
the time. We can adjust for this by adding an argument called
prob
, which provides a vector of two probability
weights.
prob = c(0.2, 0.8)
indicates that for the two elements
in the outcomes
vector, we want to select the first one,
heads
, with probability 0.2 and the second one,
tails
with probability 0.8. Another way of thinking about
this is to think of the outcome space as a bag of 10 chips, where 2
chips are labeled “head” and 8 chips “tail”. Therefore at each draw, the
probability of drawing a chip that says “head”” is 20%, and “tail” is
80%.
- In your simulation of flipping the unfair coin 100 times, how many flips came up heads? Include the code for sampling the unfair coin in your response. Since the markdown file will run the code, and generate a new sample each time you Knit it, you should also “set a seed” before you sample. Read more about setting a seed below.
A note on setting a seed: Setting a seed will cause R to select the same sample each time you knit your document. This will make sure your results don’t change each time you knit, and it will also ensure reproducibility of your work (by setting the same seed it will be possible to reproduce your results). You can set a seed like this:
The number above is completely arbitraty. If you need inspiration, you can use your ID, birthday, or just a random string of numbers. The important thing is that you use each seed only once. Remember to do this before you sample in the exercise above. Finally, you should not reuse the same seed in every RMarkdown document you write-up. Each time you need to set a new seed, pick a number you haven’t used before.
In a sense, we’ve shrunken the size of the slip of paper that says
“heads”, making it less likely to be drawn and we’ve increased the size
of the slip of paper saying “tails”, making it more likely to be drawn.
When we simulated the fair coin, both slips of paper were the same size.
This happens by default if you don’t provide a prob
argument; all elements in the outcomes
vector have an equal
probability of being drawn.
If you want to learn more about sample
or any other
function, recall that you can always check out its help file.
Simulating the Independent Shooter
Simulating a basketball player who has independent shots uses the same mechanism that we use to simulate a coin flip. To simulate a single shot from an independent shooter with a shooting percentage of 50% we type,
To make a valid comparison between Kobe and our simulated independent shooter, we need to align both their shooting percentage and the number of attempted shots.
- What change needs to be made to the
sample
function so that it reflects a shooting percentage of 45%? Make this adjustment, then run a simulation to sample 133 shots. Assign the output of this simulation to a new object calledsim_basket
.
Note that we’ve named the new vector sim_basket
, the
same name that we gave to the previous vector reflecting a shooting
percentage of 50%. In this situation, R overwrites the old object with
the new one, so always make sure that you don’t need the information in
an old vector before reassigning its name.
With the results of the simulation saved as sim_basket
,
we have the data necessary to compare Kobe to our independent
shooter.
Both data sets represent the results of 133 shot attempts, each with the same shooting percentage of 45%. We know that our simulated data is from a shooter that has independent shots. That is, we know the simulated shooter does not have a hot hand.
Additional questions
Using
calc_streak
, compute the streak lengths ofsim_basket
, and assign the results to a variable namedsim_streak
. Note that since thesim_streak
object is just a vector and not a variable in a tibble, we don’t need to select it using the dollar sign symbol $ like we did earlier when we calculated the streak lengths for Kobe’s shots.Describe the distribution of streak lengths. What is the typical streak length for this simulated independent shooter with a 45% shooting percentage? How long is the player’s longest streak of baskets in 133 shots? Make sure to include a plot in your answer.
If you were to run the simulation of the independent shooter a second time, how would you expect its streak distribution to compare to the distribution from the question above? Exactly the same? Somewhat similar? Totally different? Explain your reasoning.
How does Kobe Bryant’s distribution of streak lengths compare to the distribution of streak lengths for the simulated shooter?
How to submit
To submit your lab assignment, follow the two steps below. Your lab will be graded for credit after you’ve completed both steps!
Save, commit, and push your completed RMarkdown file so that everything is synchronized to GitHub. If you do this right, then you will be able to view your completed file on the GitHub website.
Knit your R Markdown document to the PDF format, export (download) the PDF file from RStudio Server, and then upload it to Lab 8 posting on Blackboard.
Credits
This lab is released under a Creative Commons Attribution-ShareAlike 4.0 International License. Lab instructions were adapted by Ajay Kulkarni for CDS-102 from OpenIntro Lab 4 - Probability by Andrew Bray and Mine ?etinkaya-Rundel, which itself was adapted from a lab written by Mark Hansen of UCLA Statistics.